Measurement of photons via conversion pairs with the PHENIX experiment at RHIC

- Torsten Dahms State University of New York at Stony Brook
for the PHENIX Collaboration
at the DNP Fall Meeting – October 30, 2004

Outline

- Motivation possibility to measure photons at low p_T
- Technique photon conversions in beam pipe
 - Invariant mass spectra of e⁺e⁻ pairs
 - Conversion pair properties
 - Extraction of conversion pairs
- Raw photon p_T spectrum
- Outlook

Motivation

- Thermal photons carry information about initial temperature of produced medium
- Direct photons have been measured in PHENIX
 - Used method has systematic errors ~30%
 - Expected contribution of thermal photons at 2 GeV ~10%
- New method with smaller systematic errors
 - Reconstruct e⁺e⁻ from photon conversions
 - Goal: sys. errors <10%

Mechanism

- Reconstruct electron positron pairs
- Conversion pairs are created in the beam pipe $(r \approx 4cm)$
 - PHENIX momentum reconstruction relies on ∫ Bdl

$$\int_{r}^{\infty} Bdl < \int_{0}^{\infty} Bdl \Rightarrow p_{T}^{true} < p_{T}^{reco} \Rightarrow m_{ee} > 0$$

- Leads to higher momentum
- − Pairs get an invariant mass > 0
- Invariant mass is proportional to the distance from collision vertex
- Conversion peak artificially shifts w. r. t. to Dalitz decays

Invariant e⁺e⁻ mass spectrum of Run 4 Au+Au: $\sqrt{s_{NN}} = 62.4$ GeV

Pair properties

- Conversion pairs have small intrinsic opening angle
 - magnetic field produces opening of the pair in azimuth direction $\Delta \varphi_0 = \varphi_0(e^-) \varphi_0(e^+) < 0$
 - orientation perpendicular to the magnetic field
- Dalitz decays have a real opening angle due to the π^0

Extraction of conversion pairs

• Pair cuts and subtraction of remaining Dalitz background can select a clean beam pipe conversion peak

Photon p_T spectrum

- Uncorrected photon p_T spectrum
- Dominated by $\pi^0 \to \gamma \gamma$, which is **not** subtracted yet

Outlook

- Next steps:
 - Correction for acceptance and reconstruction efficiency
 - Absolute normalization of data
 - Subtract known γ sources $(\pi^0 \rightarrow \gamma\gamma, ...)$
 - Evaluate systematic errors
- Anticipated results:
 - AuAu 62.4 GeV statistics limited (upper limit)
 - AuAu 200 GeV systematics limited
 - − Goal: reduce systematic errors < 10%

